Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Cancer ; 75(5): 1382-1398, 2023.
Article in English | MEDLINE | ID: mdl-36974004

ABSTRACT

Gastrointestinal toxicity, including diarrhea and inflammation, is commonly observed with the use of 5-fluorouracil (5-FU). Several studies have shown that polysaccharides are interesting bioactive macromolecules for the treatment or prevention of gastrointestinal diseases. Therefore, in this study, the effect of a polysaccharide fraction from a mixture of two Guavira species (Campomanesia adamantium and Campomanesia pubescens), referred to here as CPW, on the development of intestinal mucositis was investigated. Intestinal mucositis was induced by a single injection of 5-FU (450 mg/kg), and various doses of CPW (3-100 mg/kg) were tested. CPW attenuated disease development and prevented small bowel dysmotility and colon shortening. CPW prevented the increase in villi width, crypt depth, and mucosal thickness in the duodenum, but not in the colon. Preservation of mucus, reduction of oxidative stress, inflammation, and prevention of the 5-FU-induced enlargement and swelling of the spleen were observed. In conclusion, this study demonstrated for the first time that CPW alleviates the intestinal damage induced by 5-FU and could be used as an adjuvant strategy during chemotherapy.


Subject(s)
Fluorouracil , Mucositis , Mice , Animals , Fluorouracil/toxicity , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Antimetabolites, Antineoplastic/toxicity , Intestinal Mucosa , Inflammation/chemically induced , Inflammation/drug therapy , Polysaccharides/pharmacology
2.
Front Physiol ; 12: 714846, 2021.
Article in English | MEDLINE | ID: mdl-34366901

ABSTRACT

Intestinal mucositis is a clinically relevant side effect of anticancer therapies. It is experienced by 60-100% of patients undergoing treatment with high doses of chemotherapy, radiation therapy, and bone marrow transplantation. Intestinal mucositis can manifest as pain, weight loss, inflammation, diarrhea, rectal bleeding, and infection; affecting normal nutritional intake and intestinal function. It often impacts adherence to anticancer therapy as it frequently limits patient's ability to tolerate treatment, causing schedule delays, interruptions, or premature discontinuation. In some cases, local and systemic secondary infections are observed, increasing the costs toward medical care and hospitalization. Several strategies for managing mucositis are available which do not always halt this condition. In this context, new therapeutic strategies are under investigation to prevent or treat intestinal mucositis. Polysaccharides from natural resources have recently become promising molecules against intestinal damage due to their ability to promote mucosal healing and their anti-inflammatory actions. These effects are associated with the protection of intestinal mucosa and regulation of microbiota and immune system. This review aims to discuss the recent advances of polysaccharides from natural resources as potential therapies for intestinal mucositis. The source, species, doses, treatment schedules, and mechanisms of action of polysaccharides will be discussed in detail.

3.
Nutrients ; 13(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200897

ABSTRACT

Purpose: To review the effects of polysaccharides and their proposed mechanisms of action in breast cancer experimental models. Data sources, selection, and extraction: Articles were selected by using PubMed, ScienceDirect, Scopus, and Medline, assessed from 1 May 2019 to 1 July 2020. The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42020169103. Results: Most of the studies explore algae polysaccharides (43.2%), followed by mushrooms (13.5%), plants (13.5%), fruits (10.8%), fungus (2.7%), bacteria, (2.7%), and sea animals (2.7%). A total of 8.1% investigated only in vitro models, 62.1% evaluated only in vivo models, and 29.7% evaluated in vitro and in vivo models. The mechanism of action involves apoptosis, inhibition of cellular proliferation, angiogenesis, and antimetastatic effects through multiple pathways. Conclusions: Findings included here support further investigations on the anti-tumor effect of polysaccharides. Some polysaccharides, such as fucoidan and ß-glucans, deserve detailed and structured studies aiming at translational research on breast tumors, since they are already used in the clinical practice of other proposals of human health.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Polysaccharides/therapeutic use , Animals , Female , Humans , Publication Bias , Risk
5.
Pathogens ; 9(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036180

ABSTRACT

The coronavirus disease 19 (COVID-19) is caused by the highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected the global population despite socioeconomic status and amazed surveillance agencies for its incidence, mortality, and recovery rates. COVID-19 affects all age groups; however, it is suggested to progress into severe disease and cause mortality in over 10% of the confirmed cases, depending on the individual characteristics of the affected population. One of the biggest unanswered questions it is why only some individuals develop into the severe stages of the disease. Current data indicate that most of the critically ill are the elderly or those with comorbidities such as hypertension, diabetes, and asthma. However, it has been noted that, in some populations, severe disease is mostly observed in much younger individuals (<60-years old) with no reported underlying medical conditions. Certainly, many factors may contribute to disease severity including intrinsic host factors such as genetic variants, the expression levels of tissue proteins, among others. Considering all these aspects, this review aims to discuss how the expression levels of tissue proteases and the different profiles of immune responses influence the susceptibility to COVID-19 as well as disease severity and outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...